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This work deals with the parameter estimation problem for a lake eutrophication model. 
The model is a dynamic parameter estimation one, which is solved with a simultaneous 
approach with an nonlinear programming solver. Gradients of state variables are 
considered in the vertical direction, rendering a partial differential equation problem 
which is transformed into a differential algebraic (DAE) one by spatial discretization in 
two water layers. Main biochemical and chemical parameters have been obtained, 
which allow a close representation of the lake dynamics. 
 
1. Introduction 
The need for predictive ecological water quality modeling has arisen as a result of the 
increasing eutrophication of lakes throughout the world. Eutrophication models provide 
a representation of major physical, chemical and biological processes that affect the 
biomass of phytoplankton and nutrients. They represent ecological processes through a 
set of complex nonlinear differential algebraic equations, with rate coefficients that 
require calibration to suit site-specific conditions. Consequently, the first step in an 
eutrophication model development is the resolution of a parameter estimation problem.  
 
The parameter estimation problem in eutrophication models has been addressed through 
different approaches. Zhang et al. (2004) have proposed a sequential procedure to 
determine phytoplankton and zooplankton parameters using exergy as the objective 
function and calibrating both physical and chemical parameters by trial and error. Shen 
and Kuo (1998) used the variational method for estimating unknown kinetic parameters. 
More recently, Shen (2006) proposed a least-squares objective function and the 
resolution of the dynamic parameter estimation problem through the application of a 
modified Gauss-Newton method capable of handling upper and lower bounds on 
parameters and the Hessian being approximated with information from the sensitivity 
matrix calculated by finite differences. 
 
In this work, we formulate a parameter estimation problem with a least-squares 
objective function subject to a large-scale partial differential algebraic equations (PDE) 
model resulting from temporal and spatial dynamic mass balances in phytoplankton in 
the form of diatoms, green algae and cyanobacteria; dissolved oxygen and nutrients, 



such as nitrate, ammonium, organic nitrogen, silica, phosphate and organic phosphorus. 
Algebraic equations represent profiles for temperature, solar radiation and river inflows, 
in addition to the calculation of most factors that affect rate equations, such as effect of 
solar radiation, nutrients, etc. The PDE is transformed into an ordinary differential 
equation system by spatially discretizing the PDE into sets of ordinary differential-
algebraic equations (DAE) (Rodriguez and Diaz, 2006). The DAE optimization problem 
is then transformed into a large nonlinear programming (NLP) problem by representing 
state and control variables profiles by polynomial functions over finite elements in time. 
Data sets from an entire year have been included.  
 
The present study has been performed on Lake Paso de las Piedras, a lake that supplies 
drinking water for more than 400,000 inhabitants. The high content of phosphorus and 
nitrogen in Paso de las Piedras Lake is consequence of agricultural activities. The 
discretized NLP problem has been solved with a reduced successive quadratic 
programming algorithm (Biegler et al., 2002). Numerical results show good agreement 
with values from the literature. The model is currently being validated with recently 
obtained additional data from the lake. 
 
2. Lake description 
Lake Paso de las Piedras (Fig. 1) is located in the south of the Buenos Aires Province 
(Argentina) at 38° 22´ S and 61° 12´ W and was constructed to supply drinking water to 
the cities of Bahía Blanca and Punta Alta and for industrial purposes at a petrochemical 
complex nearby.  

 
Figure 1. Satellite image of Lake Paso de las Piedras indicating the tributaries and the 

sampling sites (E1, E2, E3 and E4). 
The trophic level of this water body currently corresponds to eutrophic category and it 
undergoes algal blooms during warm months. The Stream El Divisorio and Sauce 

 



Grande River are the two tributaries of the lake. A summary of lake characteristics is 
shown in Table 1. Biological and chemical data were weekly collected from January to 
December 2004 at four sampling stations (Fig 1).  

 
3. Parameter Estimation Problem for Eutrophication and Data Input 

Mechanistic eutrophication models represent ecological processes by partial differential 
inter- dependent conservation equations, with rate coefficients that require calibration to suit 
site-specific conditions. Therefore, the first step in an eutrophication model development is 
the formulation and solution of a dynamic parameter estimation problem.  
In this work, we have formulated a one dimensional dynamic model for the lake, which has 
been spatially discretized in two layers, corresponding to currently available concentrations 
data at two levels in the lake.  
 

Input requirements for the model are of four types. These are descriptive data for the lake 
itself, hydrodynamic forcing data (primarily meteorological, as temperature and solar 
radiation, and inflow and outflow profiles data), water quality known parameters, 
phytoplankton and nutrients profiles and initial conditions for all the modeled variables. 
High frequency sampling is required to properly describe the dynamics of the lake The 
external forcing functions, such as temperature and solar radiation were approximated with 
polynomial functions (r2=0.98 and 0.94, respectively), as shown in Fig 2. River inflows and 
associated nutrient loading., as well as outflow data have also been approximated with 
polynomials. Future improvements include their representation with sinusoidal functions. 
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Figure 2. Temperature and solar radiation versus time. 

Table 1. Lake characteristics 
  

 

Area of drainage basin 
Perimeter of coastline 
Surface  
Mean depth 

 

1620 km2 
60 km 
36 km2 
8.2 m 

 

Maximum depth 
Maximum volume 
Retention time 

 

28 m 
328 Hm3 
4 years 



Additional inputs for the parameter estimation problem includes concentration profiles for 
the modeled state variables, i.e., three groups of phytoplankton, nitrogen as nitrate, 
ammonium and dissolved organic nitrogen, phosphorus, as orthophosphate and 
dissolved organic phosphorus, oxygen as dissolved oxygen and biochemical oxygen 
demand. Weekly data throughout a whole year have been included.  
 
In most eutrophication models, the different types of phytoplankton are lumped within 
one state variable, however, we have considered three state variables corresponding to 
diatoms, chlorophytes and cyanobacteria, because it is important to know how they are 
present in a bloom of algae, in order to determine the potential damage that they can produce 
in the water drinking resource.  
 
Differential equations for each state variable in each spatial layer include components 
inputs from tributaries, outputs for both potabilization and industrial purposes, sources 
and sinks, transference between layers, as well as accounting for lake volume 
variability. Estimated parameters are included within the source and sink terms. They 
are listed in Table 3, together with their estimated values. The three phytoplankton 
groups differ in their maximum growth rates, nitrogen and phosphorus kinetics, light 
requirements.  
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where,  

jCi, = concentrations of i (g/m3) 
 QU and QUout = input and output rate (m3/d) 

j,Si = rate of change of i (Zhang et al. 2004, Zheng et al. 2004) (g/m3/d) 
i = diatoms, chlorofites, cyanobacteria, NO3, NH4, NO, PO4, PO, DO and DBO 
 j = different layers at the water column 
DU and VU= depth (m) and volume (m3) of upper layer respectively 
A = surface area (m2) 
kd = mixing rate (m2/d) 
µi,j = net growth (1/d) 
fT, fN and fI = effects of water temperature, nutrients and solar radiation, respectively 
µimax = maximum growth of i (1/d) 
ri = respiration rate of i  
mi = mortality rate of i (1/d) 
vsi = settling velocity of i (1/d) 
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tempi = optimum temperature of growth of i (C) 
Li = optimum solar radiation of growth of i(Ly/d) 
kpi = half saturation constant for phosphorus uptake (g/m3) 
 
4. Discussion of Results 
The parameter estimation problem to determine the values of twelve parameters in the 
Paso de las Piedras eutrophication model is a differential algebraic optimization model 
with twenty differential equations and fifty algebraic ones, after spatial discretization in 
two layers. The objective function is a least squares one. Currently available weekly 
measurements of concentrations at two water levels (water surface and outflow level, at 
eight meters depth) have rendered this discretization. At the moment, data are being 
collected at six different levels to perform a more detailed discretization. A time horizon 
of 365 days has been considered to account for a complete annual cycle. The resulting 
nonlinear programming (NLP) problem for forty elements and three collocation points 
has 10432 nonlinear equations. It has been solved with an Interior Point method with 
reduced Successive Quadratic Programming (SQP) techniques within program IPOPT 
(Biegler et al., 2002), in which successive parametric NLP subproblems are solved for 
decreasing values of the barrier parameter. Initial barrier parameter value has been 0.01. 
 
Estimated parameters are shown in Table 3. Their values, which are within upper and 
lower bounds from the bibliography, give state variables profiles which are in 
agreement with data from the lake. Figure 3 shows cyanobacteria and nitrates profiles as 
compared to experimental data for an entire cycle of 365 days. 
 
Table 3 
Symbol Description Calibrated 

value 
Lower 
bound 

Upper 
bound 

μCmax Max growth of cyanobacteria (l/d) 4.502 1.30 4.50 
mC Mortality rate of cyanobacteria (1/d) 0.041 0.001 0.125 

tempC Optimal growth temp. of cyano (C) 27.010 15 30 
μDmax Max growth of diatoms  (l/d) 3.011 1.30 4.50 

mC Mortality rate of diatoms  (l/d) 0.101 0.001 0.125 
tempD Optimal growth temp. of diatoms (C) 15.212 15 30 
μGmax Max growth of chlorophytes  (l/d) 2.903 1.30 4.50 

mC Mortality rate of chlorophytes  (l/d) 0.098 0.001 0.125 
tempG Optimal growth temp.chlorophytes(C) 23.564 15 30 

kni Rate coeff. for nitrification (1/d) 0.0035 0.005 0.030 
kmP Rate coeff. mineralization OP(1/d) 0.040 0.002 0.400 

vsNO Settling rate of ON (1/d) 0.051 0.002 0.090 
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Figure 3. Experimental data (▲) and simulated profiles (continuous line) with estimated 

parameters 
 

5. Conclusions 
A dynamic parameter estimation problem for an eutrophication model has been solved 
with a simultaneous dynamic approach. To our knowledge, these rigorous models have 
not been solved with advanced dynamic optimization techniques. A large number of 
biological parameters has been determined, based on weekly measurements throughout 
2004. Currently, more detailed data are being obtained at different water levels to 
formulate a more detailed model. Once validated, the dynamic optimization model will 
be run to determine optimal profiles for nutrient inputs to establish remediation policies. 
 

Acknowledgments 
The authors gratefully acknowledge financial support from CONICET, Universidad 
Nacional del Sur and ANPCYT, Argentina.  
 

6. References 
Biegler L.T., Cervantes A, Waechter A., 2002; Advances in Simultaneous Strategies for 

Dynamic Process Optimization. Chem. Eng. Sci. 57: 575-593. 
Parodi, E. R., Estrada, V., Trobbiani, N., Argañaraz Bonini, G., 2004, Análisis del 

estado trófico del Embalse Paso de las Piedras (Buenos Aires, Argentina). Ecología 
en tiempos de Cambio. p. 178.  

Rodríguez, M., M. S. Diaz, 2007, Dynamic modelling and optimisation of cryogenic 
systems, Applied Thermal Engineering, 27, 1182-1190. 

Shen, J., 2006, Optimal estimation of parameters for aestuarine eutrophication model, 
Ecological Modelling 191, 521–537. 

Shen, J., Kuo, A.Y., 1998, Application of inverse model to calibrate estuarine 
eutrophication model. J. Environ. Eng. 124 (5), 409–418. 

Zhang, J.J., Jorgensen, S.E., Mahler, H., 2004, Examination of structurally dynamic 
eutrophication model. Ecol. Model. 173, 313–333. 

Zheng, L., Chen, C., Zhang, F. Y., 2004, development of water quality model in the 
Satilla River Estuary, Georgia. Ecol. Model. 178, 457–482. 


